

Probability & Statistics

- 6. In a certain college 25% of boys and 10% of girls are studying mathematics. The girls Constitute 60% of the student body. (a) What is the probability that mathematics is beingstudied? (b) If a student is selected at random and is found to be studying mathematics, find the probability that the student is a girl? (c) a boy [10 M]
- 7. Two dice are thrown. Let X assign to each point (a,b) in S the maximum of its numbers i.e, X(a,b)= max (a,b). Find the probability distribution. X is a random variable with X(s)={1,2,3,4,5,6}. Also find the mean and variance of the distribution. [10 M]
- 8. A random variable X has the following probability function

Х	0	1	2	3	4	5	6	7
P(x)	0	Κ	2K	2K	3K	K^2	$2K^2$	$7K^2+K$

Determine (i) K (ii) Evaluate $P(X \ge 6)$ and P(0 < X < 5) (iii) if $P(X \le K) > 1/2$, find the minimum value of K (iv) variance. [10 M]

9. A) Find the mean and variance of the uniform probability distribution given by $f(x) = \frac{1}{n}$ for x = 1, 2, ..., n. [5 M]

b) If a random variable has a Probability density f(x) as $f(x) = \begin{cases} 2e^{-2x}, & \text{for } x > 0\\ 0, & \text{for } x \le 0 \end{cases}$

Find the Probabilities that it will take on a value (i)Between 1 & 3 (ii)Greater than 0.5 [5 M]

10. Probability density function of a random variable X is $f(x) = \begin{cases} \frac{1}{2} \sin x, & \text{for } 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$. Find the mean,

mode and median of the distribution and also find the probability between 0 and $\frac{\pi}{2}$. [10 M]

UNIT-II

	<u>UNIT-II</u>	
1.	a) Define Binomial distribution.	[2 M]
	b) A fair coin is tossed six times. Find the Probability of getting four heads.	[2 M]
	c) Define Poisson distribution.	[2 M]
	d) If a bank received on the average 6 bad cheques per day, find the probability that it will received	ve
	4 bad cheques on any given day.	[2 M]
	e)Define Normal distribution. [2 M]	
2.	a) Derive mean and variance of Binomial distribution.	[6 M]
	b) 20% of items produced from a factory are defective. Find the probability that in a sample of 5	
	chosen at random (i) one is defective (ii) $p(1 < x < 4)$	[4 M]
3.	a) Fit a Binomial distribution to the following frequency distribution:	[8 M]
	x 0 1 2 3 4 5	
	f 2 14 20 34 22 8	
		[A] []
	b) The mean and variance of a binomial distribution are 4 and $\frac{4}{3}$. Find $p(X \ge 1)$.	[2M]
4.	a) Out of 800 families with 5 children each, how many would you expect to have (a) 3 boys (b)	5
	girls(c) either 2 or 3 boys. Assume equal probabilities for boys and girls.	[6M]
	b) Two dice are thrown five times. Find the probability of getting 7 as sum i) at least once	L- J
	(ii) $p(1 < x < 5)$	[4M]
5.	a) Derive mean and variance of poisson distribution.	[6 M]
	b) If 2% of light bulbs are defective. Find the probability that (i) At least one is defective	[0 1,1]
	(ii) $p(1 < x < 8)$ in a sample of 100	[4 M]
6.	a) Fit a Poisson distribution to the following data	[8 M]
0.	x 0 1 2 3 4 5 Total	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
_	b) If the mean of a Poisson distribution is 1.8 then find $p(X > 1)$.	[2M]
7.	a) An insurance agent policies of 5 men all of identical age and good in health. The probability	
	that a man of this age will be alive 30 years is 2/3. Find the probability that in 30 years.	
	(i) At least one man (ii) Almost hree will be alive	[6M]
	b) If X is a Poisson variate such that $3P(X = 4) = \frac{1}{2}P(X = 2) + p(X = 0)$,	
	2	
	find (i) the mean (ii) $P(X \le 2)$	[4 M]
8.	Derive mean and variance of Normal distribution.	[10 M]
9.	Find the mean and variance of a Normal distribution in which 7% of items are under 35	
	and 89% are under 63.	[10 M]
10	. In a sample of 1000 cases, the mean of certain test is 14 and standard deviation is 2.5. Assuming	
	distribution to be normal find (i) How many students score between 12 and 15. (ii) How many s	
	score above 18? (iii) How many students score below 18?	[10 M]

<u>UNIT-III</u>

1.a)The weigh	ts of 6 c	ompe	titors	in a c	pame	are gi	ven	belo		8 62	56.6	3 55	61k	σs			
Find arit		-			-	-			55	0,02	,50,0	,	01K	50.		[2M]
b)Find the med				-		-			2.							[2 M	-
c)Obtain mode				0						5,20,	12,2	4.				[2 M	-
d)Write the for									,		,					[2 M	-
e) Write the	e formul	las for	the li	nes c	of reg	ressio	n X	on `	Y and	dY	on X	•				[2 M	[]
2.a) Find arith	metic 1	mean t	the	follo	owing	g data	usi	ng s	tep d	levia	tion	metho	bd			[5M]	
Marks		-20			20-30			30-4	0		40-	-50			0-60		
freque	ncy 5			8	8		4	25			22			1	0		
b) Find the me	dian to		1	<u> </u>								1		-		[5M]]
Х		5	8			1		14		17		20		2			
f		2	8			2	4	20		10		6		3			
3.a) Find the n				ing o				-								[5M]]
	ntervals		0-50			-60			0-70			0-80			80-90)	
frequer		5			12			23	3		8				2		
b) Find arithm	netic m	ean to	the f	ollov	ving c	lata								_		[5M]	
X		1			2			3			4			5			
f I I	1	5	• 1		8			10			12			6		573.6	
4. a)Find mode					00	20		20 4	0		10 50	<u>,</u>	50			[5M]	
X	0-10		10-20		20-3	30		<u>30-4</u>	-0		<u>40-50</u>)	_)-60		60-7	/0
F b) The first	4		<u>13</u>	1:	21			44	1		33		22		20.4	7 0 and	50
b) The first									ilue .	011	line v	ariadi	es a	re z	,20,4		
Calculate mea											.1	N 11		1.		[5M]	-
5. Compute Ka	arl Pears	son an	d Bov	vley	scoet	ficien	t of	Ske	wnes	ss to	the 1	ollow	ing	dat	a	[10N	1]
Class	0-10	10-2	$\frac{1}{2}$	20-30	20	-40	40-2	50	50-	60	60-7	0 7	70-8	0	80-9	0	90-100
intervals	0-10	10	20 2	20-30	5 50	-40	40	30	50-	00	00-7	0	/0-0	0	00-5	<i>i</i> 0	90-100
	-		1	1			10		75		4.5				10		0
frequency	2	6		1	20		40		75		45		25		18		8
6. Compute the	e first fo	our cei	ntral n	nome	ents to	the f	tollo	win	g dat	ta an	d als	o finc	l Sh	eppa	ard's		
β_1 and β_2	1									1						[10N	1]
Class	0-10		10-20		20-3	80	30)-40		40-	-50	5	0-60)	60	-70	
intervals																	
frequency	2		8		12		40			20		1	5		3		
7.a)Calculate				_		1	ing ([5M]	
X 10	15		2	17		13		16		24		14		22		20	
Y 30	42		5	46		33		34		40		35		39		38	
b) Obtain the r						1	ollo		g dat	1		50			5M]	1	
X 48	60		2	62		56		40		39		52		30		_	
Y 62	78	6	55	70)	38		54		60		32		31			
9 a)Tan aamaa	titora :		cion14			ontra	h	th a	thes -		~~~ ^	Dat		-: r	the f	-11	ina
8.a)Ten compe order:	UNOTS II	i a mu	sicalt	est v	vere r	анкео	ı oy	uie	uree	Judg	ges A	л, Бai	ia (_ 1N	the fo		-
Ranks by A	A 1	6	5	1	0	3	2	,		4	9)	7		8	[5M]	1
Ranks by I		5	8	4		3 7		10		+ 2	1		6		9		_
	2 2	5			l I	1		10	ĺ.	2			6		9		

 Ranks by A
 1
 6
 5
 10
 3
 2
 4
 9
 7
 8

 Ranks by B
 3
 5
 8
 4
 7
 10
 2
 1
 6
 9

 Ranks by C
 6
 4
 9
 8
 1
 2
 3
 10
 5
 7

Probability & Statistics

Using rank correlation coefficient method, discuss which pair of judges has the nearest approach to common likings in music.

b)If the two lines of regression are 4X-5Y+30=0 and 20X-9Y-107=0 which of these is the line of regression of X on Y. Find r and σ_y when $\sigma_x = 3$ [5M]

9.a)Obta	ain the ra	nk correl	ation coe	fficient fo	or the foll	owing da	.ta :			[5M]
	Х	68	64	75	50	64	80	75	40	55	64
	Y	62	58	68	45	81	60	68	48	50	70
b)	Find	two regre	ession equ	uations fr	om the fo	ollowing	data :				[5M]
	Х	10	25	34	42	37	35	36	45		

 Y
 56
 64
 63
 58
 73
 75
 82
 77

 11. a)Calculate the correlation coefficient for the following heights(in inches) of fathers(X) and their sons(Y) [6M]
 [6M]

Х	65	66	67	67	68	69	70	72
Y	67	68	65	68	72	72	69	71

b) From the following regression equations, calculate \overline{X} , \overline{Y} and r 20X-9Y=107, 4X-5Y=-33[4M]

<u>UNIT –IV</u>

1. a)	write norm	al equa	ations	to y =	= <i>ax</i> +	b							[2M]
b)	write norm	al equ	ations	to y =	$=ax^2$	+bx+	· c						[2M]
	Define para	-											[2M]
,	Define Nul				nativ	e hypo	othesis	s.					[2M]
									e in	terva	l for p	population mean μ .	[2M]
	By method											,	[5M]
,	x		1		2	_	3	4		-	5	7	
	у		14		27	4	0	55	5	(58	-	
b)	Fit a second	d degr	ee pol	ynomi	ial to	the fo	llowir	ng data	ı by	meth	od of	least squares	[5M]
		-	-	-				C	•			•	
	x 0	1	2	3	4	2							
	y I	1.8	1.3	2.5	6.	3							
3. a)	Fit a parabo	ola to t	he dat	ta give	n bel	ow							[5M]
	Х	1		2		3	4	1		5			
	У	10		12		8	-	10		14			
b)	Obtain a re	lation	of the	form	v = a	b^x for	r the f	ollowi	ng c	lata b	v met	thod of least squares	[5M]
	X	2		3	· .	4	5			5	5	1	
	v v	8.3		15.4		33.1		5.2		127.4			
,			1 ()		I		hr.	.1 .0	11		1 . 1	.1 1 61 .	
+. a)	Find the cu	rve of	best I	it of th	ie typ	e y=	aette	o the I	01101	wing	data t	by method of least squa	
	X	1		5	7	,	9		1	2			[5M]
	V	10		15		2	15	5	2				
1-)						C 11	• 1	,	I				[7] (1)
D)	Fit a straigl	nt line	y = a	x + b	or the	IOIIOW	ing da	ita					[5M]
	Х	6	7	7	8	8	8	9		9	10		
	у	5	5	4	5	4	3	4		3	3		
5. a)	Fit a $y = ay$	x^b to the theorem of the temperature of	ne foll	owing	data	, also (calcul	ate y(2.5)				[5M]
	Х		1		2		4		6				
1 \	У	1 1	6		4	1 0	2	1 .	2	.1		1	5 73 6 3
b)	Fit a second		ee pol								od of	least squares	[5M]
	Х	0		1		2	3			1			
	у	1		5		10	2	2		38			
	A sample o					nple h	as con	ne from	m a j	popu	lation	leviation is 10. The me with mean 38.	[5M]
the b) res 2.5 7. a)	The means spectively. (5 inches . It is claimed	of two Can th d that	o large e samj a rand	ples be	e rega mple	rded a of 49	as drav Ityres	wn fro has a i	m th mear	ne sar n life	ne po of 15	are 67.5 inches and 68. pulation of standard de 200 km.This sample we eviation of 1200 km. T	eviation [5M] vas

Probability & Statistics

b)Samples of students were drawn from two universities and from their weights in kilograms, mean and standard deviations are calculated and shown below. Make alarge sample test to test the significance of the difference between the means. [5M]

	Mean	S.D	Size of the sample
University A	55	10	400
University B	57	15	100

8. a) In a random sample of 125 cool drinkers 68 said they prefer thumsup to pepsi. Test thus null hypothesis P = 0.5 against the alternative hypothesis is P > 0.5 [5M]

b) On the basis of their total scores, 200 candidates of a civil service examination are divided in to two groups, the upper 30% and the remaining 70%.consider the first question of the examination. Among the first group,40 had correct answer, where as among the second group, 80 had correct answer. On the basis of these results, can one conclude that the first question is not good at discriminating ability of the type being examined here? [5M]

9. a) A die was thrown 9000 times and of these 3220 yielded a 3or 4. Is this consistent with the hypothesis that the die was unbiased?

[5M]

b) In two large populations, there are 30%, and 25% respectively of fair haired people. Is this difference likely to be hidden in samples of 1200 and 900 respectively from the two populations .

10. a) A random sample of size 50 has standard deviation 11.8 drawn from a normal population.
can we assume that the sample has been drawn from the population with S.D 10. [5M]
b) Two random samples of sizes 100 each are drawn from two populations with the standard deviations 2.823 and 1.548. Test the significance difference between the sample standard deviations, if the population standard deviation is 2. [5M]

UNIT-V

1. a) Define degrees of freedom.

b) Define Student's t-test.

c) Write the formula for Paired t-test.

d)Write the formula for Student's t-test for difference of means.

e)Define Chi-square test.

2. a) A sample of 26 bulbs gives a mean life of 990 hours with a S.D of 20 hours. The manufacturer claims that the mean life of bulbs is 1000 hours. Is the sample not up to the standard. [5M]

b) A pair of dice are thrown 360 times and the frequency of each sum is indicated below:

											[5]	M]
Sum	2	3	4	5	6	7	8	9	10	11	12	
Frequency	8	24	35	37	44	65	51	42	26	14	14	

Would you say that the dice are fair on the basis of the chi-square test at 0.05 level of significant?

3. To examine the hypothesis that the husbands are more intelligent than the wives, an investigator took a sample of 10 couples and administered them a test which measures the I.Q. The results are as follows: [10M]

Husbands	117	105	97	105	123	109	86	78	103	107
Wives	106	98	87	104	116	95	90	69	108	85

Test the hypothesis with a reasonable test at the level of significant of 0.05 and also calculate F-test.

4. A random sample of 10 boys had the following I.Q's : 70,120,110,101,88,83,95,98,107 and 100 a) Do these data support the assumption of a population mean I.Q of 100? [10M]

b) Find a reasonable range in which most of the mean I.Q values of samples of 10 boys lie.

5. a) Blood pressure of 5 women before and after intake of a certain drug are given below

[5M]

[2M]

[2M]

[2M]

[2M]

[2M]

Before	110	120	125	132	125
After	120	118	125	136	121

Test whether the significant change in blood pressure at 1% level of significance.

b) In one sample of 8 observations the sum of the squares of deviations of the sample values from the sample was 84,4 and in the other samples of 10 observations it was 102.6. Test whether this difference is significant at 5% level [5M]

6. Two random samples reveal the following results:

Sample	Size	Sample Mean	Sum of squares of deviations from the mean
1	10	15	90
2	12	14	108

Test whether the samples came from the same normal population.

7. The nicotine in milligrams of two samples of tobacco were found to be as follows.

SampleA	24	27	26	23	25	
SampleB	29	30	30	31	24	36

Can it be said that the two samples have come from the same normal population. 8.a) A die is thrown 264 times with the following results. Show that the die is biased.

 $(\psi^2 = 11.07 \text{ at } 5 \text{ d.} \text{f} \& 5\% \text{ L.S})$

Number	1	2	3	4	5	6
on the die						
Frequency	40	32	28	58	54	52

b) Scores obtained in a shooting competition by 10 soldiers before and after intensive training are given below: [5M]

Probability & Statistics

[10M]

[10M]

[5M]

Before	67	24	57	55	63	54	56	68	33	43
After	70	38	58	58	56	67	68	75	42	38

Test whether the intensive training is useful at 0.05 level of significance.

- 9. a) Find the maximum difference that we can expect with probability 0.95 between the mean of samples of sizes 10 and 12 from a normal population if their standard deviations are found to be 2 and 3 respectively. [5M]
 - b) The following table gives the classification of 100 workers according to sex and nature of work. Test whether the nature of work is independent of the worker ($\psi^2 = 3.84$ at 1d.f) [5M]

		1	
	Stable	Unstable	Total
Males	40	20	60
Females	10	30	40
Total	50	50	100

10. a) Samples of two types of electrical light blubs were tested for length of life and following data were obtained [5M]

	Type I	Type II
Sample numbers	8	7
Sample mean	1234 hrs	1036 hrs
Sample S.D	36 hrs	40 hrs

Is the difference in the means sufficient to warrant that type I is superior to type II regarding length of life

b)The number of automobile accidents per week in a certain community are as follows: 12, 8, 20, 2, 14, 10, 15, 6, 9, 4. Are these frequencies in agreement with the belief that accident conditions were the same during this 10 week period. [5M]